Novo Logo
Excellence in Broadband Dielectric Spectroscopy • Impedance Spectroscopy • Conductivity Spectroscopy


High Voltage Test Interface for Dielectric, Conductivity and Impedance Two-Electrode Spectroscopy for the Alpha-A Modular Measurement System

The HVB 300 extension test interface for the Alpha-A modular measurement system features dielectric, conductivity, impedance 2 electrode spectroscopy at dc and / or ac voltages up to ±150 Vp.

Like all Alpha-A test interfaces, the HVB 300 features high general purpose performance. In addition, it is optimized for for broadband high voltage measurements of low loss dielectrics.

HVB 300 is especially recommended for dielectrics, semiconductors or electronic components at high AC and/or DC voltages for For material measurements, operation with the Novocontrol High Voltage Sample Cell is recommended.

HVB300 Short Specification

Frequency  3 µHz ... 1 MHz (11.5 decades)  *
Impedance 1Ω .. 1015 Ω (15 decades)
Capacitance   1 fF ... 1 F (15 decades) 
Loss factor tan(δ)

10-5 .. 104

AC signal out 5 mV .. 106 Vrms, 70 mA max
DC bias out −150 VDC .. +150 VDC, 
70 mA max **
Signal generator output
200 Ω
Voltage in < ± 150 Vp dc coupled
Basic Accuracy
Relative Impedance, 
Relative Capacity,
Loss factor tan(δ) 
< 3.10-5 ***
Phase Angle < 2 m° ***
Relative Impedance, 
Relative Capacity,
Loss factor tan(δ)
< 10-5  
Phase Angle < 0.6 m°
User Calibrations load, short, open, internal self calibration and diagnostics

* in combination with the Alpha-A mainframe types AK, AN, AT
 ** requires dc bias option B of the Alpha-A mainframe,
ac + dc voltage peak amplitude must not exceed 150 V.
*** for details refer to specification charts

Important publications

  1. Richert, R (ed.), Nonlinear Dielectric Spectroscopy, Springer International Publishing, 2018.
  2. Albert, S., Bauer, T., Michl, M., Biroli, G., Bouchaud, J.P., Loidl, A., Lunkenheimer, P., Tourbot, R., Wiertel-Gasquet, C. & Ladieu, F. 2016. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352 (2016) 1308. DOI: 10.1126/science.aaf3182
  3. Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2014. Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy. Phys. Rev. Lett. 114, 067601 (2015) DOI: 10.1103/PhysRevLett.114.067601
  4. Bauer, T., Lunkenheimer, P., Kastner, S. & Loidl, A. 2013. Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110:107603. DOI: 10.1103/PhysRevLett.110.107603
  5. Bauer, T., Michl, M., Lunkenheimer, P., Loidl, A., Nonlinear dielectric response of Debye, α and β relaxation in 1- propanol. J. Noncryst. Solids 407:66. DOI: 10.1016/j.jnoncrysol.2014.07.024
  6. Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2015. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144 (2016) 114506 DOI: 10.1063/1.4944394
  7. Casalini, R., Fragiadakis, D. & Roland, C.M. 2015. Dynamic correlation length scales under isochronal conditions. Journal of Chemical Physics 142:064504 DOI: 10.1063/1.4907371