HVB300
High Voltage Test Interface for Dielectric, Conductivity and Impedance Two-Electrode Spectroscopy for the Alpha-A Modular Measurement System

The HVB 300 extension test interface for the Alpha-A modular measurement system features dielectric, conductivity, impedance 2 electrode spectroscopy at dc and / or ac voltages up to ±150 Vp.
Like all Alpha-A test interfaces, the HVB 300 features high general purpose performance. In addition, it is optimized for for broadband high voltage measurements of low loss dielectrics.
HVB 300 is especially recommended for dielectrics, semiconductors or electronic components at high AC and/or DC voltages for- nonlinear dielectric / impedance spectroscopy;
- characterization of materials or components under stress;
- extreme high impedance samples exceeding 1014 Ω.
HVB300 Short Specification
Ranges | |
Frequency | 3 µHz ... 1 MHz (11.5 decades) * |
Impedance | 1Ω .. 1015 Ω (15 decades) |
Capacitance | 1 fF ... 1 F (15 decades) |
Loss factor tan(δ) |
10-5 .. 104 |
AC signal out | 5 mV .. 106 Vrms, 70 mA max |
DC bias out | −150 VDC .. +150 VDC, 70 mA max ** |
Signal
generator output impedance |
200 Ω |
Voltage in | < ± 150 Vp dc coupled |
Basic Accuracy | |
Relative Impedance, Relative Capacity, Loss factor tan(δ) |
< 3.10-5
*** |
Phase Angle | < 2 m° *** |
Resolution | |
Relative Impedance, Relative Capacity, Loss factor tan(δ) |
< 10-5 |
Phase Angle | < 0.6 m° |
User Calibrations | load, short, open, internal self calibration and diagnostics |
* in combination with the Alpha-A mainframe types AK, AN, AT
** for older Alpha-A analyzer models, this requires dc bias option B of the Alpha-A mainframe,
ac + dc voltage peak amplitude must not exceed
150 V.
*** for details refer to specification charts
Important publications
- Richert, R (ed.), Nonlinear Dielectric Spectroscopy, Springer International Publishing, 2018.
- Albert, S., Bauer, T., Michl, M., Biroli, G., Bouchaud, J.P., Loidl, A., Lunkenheimer, P., Tourbot, R., Wiertel-Gasquet, C. & Ladieu, F. 2016. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352 (2016) 1308.
- Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2014. Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy. Phys. Rev. Lett. 114, 067601 (2015).
- Bauer, T., Lunkenheimer, P., Kastner, S. & Loidl, A. 2013. Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110:107603.
- Bauer, T., Michl, M., Lunkenheimer, P., Loidl, A., Nonlinear dielectric response of Debye, α and β relaxation in 1- propanol. J. Noncryst. Solids 407:66.
- Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2015. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144 (2016) 114506.
- Casalini, R., Fragiadakis, D. & Roland, C.M. 2015. Dynamic correlation length scales under isochronal conditions. Journal of Chemical Physics 142:064504.
- Patro, L. N., Burghaus, O., Roling, B. Nonlinear ion transport in the supercooled ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide: Frequency dependence of third-order and fifth-order conductivity coefficients. Journal of Chemical Physics:142:064505.
- Patro, L. N. / Burghaus, O. / Roling, B. Nonlinear permittivity spectra of supercooled ionic liquids: Observation of a “hump” in the third-order permittivity spectra and comparison to double-well potential models. Journal of Chemical Physics 146:154503.
- Patro, L. N. / Burghaus, O. / Roling, B. Anomalous Wien Effects in Supercooled Ionic Liquids. Physical Review Letters 116:185901.