HVB1000
High Voltage Test Interface for Dielectric, Conductivity and Impedance Two-Electrode Spectroscopy for the Alpha-A Modular Measurement System

The HVB 1000 extension test interface for the Alpha-A modular measurement system features dielectric, conductivity, impedance 2 electrode spectroscopy at dc and/or ac voltages up to ±500 Vp.
Like all Alpha-A test interfaces, HVB 1000 has high general purpose performance but is optimized for for broadband high voltage measurements of low-loss dielectrics.
HVB 1000 is especially recommended for dielectrics, semiconductors or electronic components at high AC and / or DC voltages for- non-linear dielectric/impedance spectroscopy;
- characterization of materials or components under stress;
- extremely high impedance samples exceeding 1014 Ω.
For material measurements, operation with the Novocontrol High Voltage Sample Cell is recommended.
HVB1000 Short Specification
Ranges | |
Frequency | 3 µHz ... 10 kHz (9.5 decades) |
Impedance | 100 Ω .. 1015 Ω (13 decades) |
Capacitance | 1 fF ... 0.1 F (14 decades) |
Loss factor tan(δ) |
10-5 .. 104 |
AC signal out | 20 mV .. 353 Vrms, 3.3 mA max |
DC bias out | −500 VDC .. +500 VDC, 3.3 mA max ** |
Signal
generator output impedance |
150 kΩ |
Voltage in | < ± 500 Vp dc coupled |
Basic Accuracy | |
Relative Impedance, Relative Capacity, Loss factor tan(δ) |
< 3.10-5
*** |
Phase Angle | < 2 m° *** |
Resolution | |
Relative Impedance, Relative Capacity, Loss factor tan(δ) |
< 10-5 |
Phase Angle | < 0.6 m° |
User Calibrations | open, internal self calibration and diagnostics |
** requires dc bias option B of the Alpha-A mainframe,
ac + dc voltage peak amplitude must not exceed
500 V.
*** for details refer to specification charts
Important publications
- Richert, R (ed.), Nonlinear Dielectric Spectroscopy, Springer International Publishing, 2018.
- Albert, S., Bauer, T., Michl, M., Biroli, G., Bouchaud, J.P., Loidl, A., Lunkenheimer, P., Tourbot, R., Wiertel-Gasquet, C. & Ladieu, F. 2016. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352 (2016) 1308. DOI: 10.1126/science.aaf3182
- Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2014. Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy. Phys. Rev. Lett. 114, 067601 (2015) DOI: 10.1103/PhysRevLett.114.067601
- Bauer, T., Lunkenheimer, P., Kastner, S. & Loidl, A. 2013. Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110:107603. DOI: 10.1103/PhysRevLett.110.107603
- Bauer, T., Michl, M., Lunkenheimer, P., Loidl, A., Nonlinear dielectric response of Debye, α and β relaxation in 1- propanol. J. Noncryst. Solids 407:66. DOI: 10.1016/j.jnoncrysol.2014.07.024
- Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2015. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144 (2016) 114506 DOI: 10.1063/1.4944394
- Casalini, R., Fragiadakis, D. & Roland, C.M. 2015. Dynamic correlation length scales under isochronal conditions. Journal of Chemical Physics 142:064504 DOI: 10.1063/1.4907371