Novo Logo
Excellence in Broadband Dielectric Spectroscopy • Impedance Spectroscopy • Conductivity Spectroscopy

HVB4000

High Voltage Test Interface for Dielectric, Conductivity and Impedance Two-Electrode Spectroscopy for the Alpha-A Modular Measurement System
HVB 4000

The HVB 4000 extension test interface for the Alpha-A modular measurement system features dielectric, conductivity, impedance 2 electrode spectroscopy at dc and / or ac voltages up to ±2000 Vp.

Like all Alpha-A test interfaces, HVB 4000 not only features excellent general purpose performance but is particularly optimized for broadband high voltage measurements of low-loss dielectrics.

HVB 4000 is especially recommended for dielectrics, semiconductors or electronic components at high AC and / or DC voltages for

For material measurements, operation with the Novocontrol High Voltage Sample Cell is recommended.

HVB4000 Short Specification

Ranges
Frequency  3 µHz ... 10 kHz (9.5 decades)
Impedance 1kΩ .. 2·1015 Ω (12 decades)
Capacitance   1 fF ... 0.01 F (13 decades) 
Loss factor tan(δ)

10-5 .. 104

AC signal out 20 mV .. 1414 Vrms, 2.7 mA max
DC bias out −2000 VDC .. +2000 VDC, 
2.7 mA max **
Signal generator output
impedance
750 kΩ
Voltage in < ± 2000 Vp dc coupled
Basic Accuracy

Relative Impedance, 
Relative Capacity,
Loss factor tan(δ) 

< 3.10-5 ***
Phase Angle < 2 m° ***
Resolution

Relative Impedance, 
Relative Capacity,
Loss factor tan(δ) 

< 10-5  
Phase Angle < 0.6 m°
User Calibrations open, internal self calibration and diagnostics

 ** requires dc bias option B of the Alpha-A mainframe,
ac + dc voltage peak amplitude must not exceed 2000 V.
*** for details refer to specification charts

Important publications

  1. Richert, R (ed.), Nonlinear Dielectric Spectroscopy, Springer International Publishing, 2018.
  2. Albert, S., Bauer, T., Michl, M., Biroli, G., Bouchaud, J.P., Loidl, A., Lunkenheimer, P., Tourbot, R., Wiertel-Gasquet, C. & Ladieu, F. 2016. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352 (2016) 1308. DOI: 10.1126/science.aaf3182
  3. Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2014. Cooperativity and Heterogeneity in Plastic Crystals Studied by Nonlinear Dielectric Spectroscopy. Phys. Rev. Lett. 114, 067601 (2015) DOI: 10.1103/PhysRevLett.114.067601
  4. Bauer, T., Lunkenheimer, P., Kastner, S. & Loidl, A. 2013. Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110:107603. DOI: 10.1103/PhysRevLett.110.107603
  5. Bauer, T., Michl, M., Lunkenheimer, P., Loidl, A., Nonlinear dielectric response of Debye, α and β relaxation in 1- propanol. J. Noncryst. Solids 407:66. DOI: 10.1016/j.jnoncrysol.2014.07.024
  6. Michl, M., Bauer, T., Lunkenheimer, P. & Loidl, A. 2015. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144 (2016) 114506 DOI: 10.1063/1.4944394
  7. Casalini, R., Fragiadakis, D. & Roland, C.M. 2015. Dynamic correlation length scales under isochronal conditions. Journal of Chemical Physics 142:064504 DOI: 10.1063/1.4907371