

ALPHA High Grade Dielectric Analyzer

- Self-sufficient analyzer for frequency-dependent measurements without compromises
- Ultra-wide requency range: 3 µHz ... 40 MHz
- Ultra-wide impedance range: $10 \text{ m}\Omega$... $100 \text{ T}\Omega$, covered in one single measurement set-up
- Highest phase resolution of 0.001° to capture even the smallest losses in materials (tan $\delta > 3 \times 10^{-5}$)
- Fast data acquisition rate: 60 ms/point
- Optionally 6 ms/point in direct mode
- User-performed and software-assisted automatic self calibration and diagnosis compensates long term internal drift and verifies functionality.
- Harmonics measurements to analyze non-linearity effects
- High level command set for easy programming
- Powerful WinIMP/WinDETA software package for turnkey applications

Novocontrol Technologies GmbH & Co. KG Aubachstr. 1 56410 Montabaur

Germany

Phone: +49 2602 9196690 Fax: +49 2602 91966933 e-mail: novo@novocontrol.de web: http://www.novocontrol.de

NOVOCONTROL Alpha

The fastest route to new materials

The Novocontrol ALPHA broadband dielectric/impedance analyzer provides access to the full electrical characaterisation of materials and devices. Complex parameters like impedance, admittance, permittivity, conductivity, are easily accessible with ultra-high precision and accuracy.

Electrical impedance measurements on materials analyze the property to store and transfer electrical charge. Materials properties are analyzed in terms of complex properties, e.g., the permittivity ϵ or conductivity σ . In the permittivity representation, δ denotes the phase angle between its imaginary and real parts, and tan δ = ϵ "/ ϵ ' represents dielectric loss.

When it comes to low-loss materials, the crucial property of a frequency response analyzer is its phase resolution. In this respect, the ALPHA offers unsurpassed performance, i.e., a very high phase resolution of less than 0.001° , equivalent to a tan δ resolution of 10^{-5} .

Ultra-Wide Impedance Range

The ALPHA broadband dielectric analyzer offers a unique measurement solution which covers up to sixteen decades of impedance. Values between 10 m Ω and 100 T Ω are determined continuously, i.e., without changing the setup. The ALPHA series analyzers (models differ in their maximum frequency) are thus capable to fully characterize a wide range of materials spreading from the best insulators to good conductors.

Ultra-High Phase Resolution

In order to reach ultimate accuracy, especially with respect to low-loss materials, the ALPHA uses a particu-

lar reference technique. For each selected frequency, the measured sample impedance is compared to the measured impedance of a precision low-loss reference capacitor. The reference measurement eliminates all linear systematic deviations from the sample impedance. This technology, in combination with a straightforward digital design, achieves the highest level of accuracy required for materials analysis, particularly for broadband spectroscopy of low-loss dielectrics.

Harmonics Analysis

In general, the electrical behavior of materials is expected to be linear. Some materials, however, exhibit an intrinsic non-linear behavior or are deliberately made non-linear for certain purposes or applications. The ALPHA analyzes higher harmonics of such materials by complex Fourier transformation. This opens the way to a new range of experiments, known as non-linear spectroscopy.

Specifications:

Ranges

Frequency: $3 \mu Hz ... 40 \text{ MHz} (13.1 \text{ decades})^*$ Impedance: $10^{-2} ... 10^{14} \Omega$ (16 decades) Capacitance: 1 fF ... 10 F (16 decades)

Loss factor $tan(\delta)$: 10^{-5} .. 10^4 AC signal out: $100 \mu V$.. 3 Vrms

DC bias out: -40 VDC .. +40 VDC, 70 mA max** Signal generator output impedance: 50Ω Voltage input: $< \pm 4.3 \text{ Vp dc}$ or ac coupled

Base Accuracy

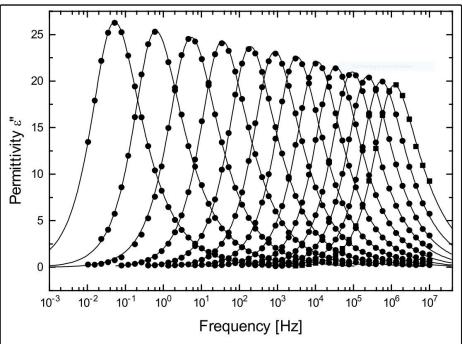
Relative Impedance, Relative Capacity,

Loss factor $tan(\delta)$: < 3.10⁻⁵ ***

Phase Angle: < 0.002° **

Resolution

Relative Impedance, Relative Capacity,


Loss factor $tan(\delta)$: < 10^{-6} Phase Angle: < 0.0006°

User Calibrations

load, short, open, internal self calibration and diagnostics

System Interface: GPIB/IEEE488

- * for the top-model ALPHA-T
- ** requires dc bias option B of the ALPHA
- *** for details refer to specification charts

The imaginary part of the permittity, ϵ' , of glycerole, measured with the ALPHA analyzer. Temperatures from -80 °C to 20 °C in 5 °C steps; peak positions shift to higher frequency with increasing temperature.