POT/GAL 15 V 10 A and POT/GAL 30 V 2 A

Electrochemical Impedance Potentiostat Galvanostat Test Interface for Alpha-A Analyzer

Specification

Issue 06/2025 by Novocontrol Technologies GmbH & Co. KG

Novocontrol Technologies GmbH & Co. KG

Aubachstr. 1 56410 Montabaur Germany Phone: +49 2602 919669 0 FAX: +49 2602 919669 33 Email: novo@novocontrol.de WWW http://www.novocontrol.de

Copyright © Novocontrol Technologies GmbH & Co. KG, Germany

Contents

1 Technical Data POT/GAL 15 V 10 A	4
1.1 General	4
1.2 Environment	4
1.3 Frequency Domain (Impedance) Mode	4
1.4 Time Domain Mode	5
1.4.1 Counter Electrode Polarization	5
1.4.2 Reference Voltage Inputs RE+, RE	5
1.4.3 Working Electrode Current Input WE	6
1.4.4 Main Control Loop	6
2 Technical Data POT/GAL 30 V 2 A	7
2.1 General	7
2.2 Environment	7
2.3 Frequency Domain (Impedance) Mode	7
2.4 Time Domain Mode	8
2.4.1 Counter Electrode Polarization	8
2.4.2 Reference Voltage Inputs RE+, RE	8
2.4.3 Working Electrode Current Input WE	9
2.4.4 Main Control Loop	9
3 Impedance Measurement Ranges and Accuracy	10
3.1 Accuracy of Impedance Measurement POT/GAL 15 V 10 A	10
3.2 Accuracy of Impedance Measurement POT/GAL 30 V 2 A	12
3.3 Using the Impedance Accuracy Specification	14
3.3.1 Example 1	
3.3.2 Example	15
3.4 Accuracy of Gain Phase Measurement	15

1 Technical Data POT/GAL 15 V 10 A

1.1 General

Sample connections	4, 3 and 2 wire, CE, RE+, RE-, WE
System ground modes	Protective earth or floating for grounded samples
Voltage current modes dc and ac	Potentiostat, Galvanostat, and Direct Voltage
System Interface	GPIB
Line voltage	220 - 240 V ac, 50 - 60 Hz or 110 V ac, 50 - 60 Hz (see instrument rear)
Power consumption	< 400 W
Dimensions	49 · 58 · 9 cm³ (width/depth/height)
Weight	12 kg

1.2 Environment

Operating temperature	0 °C to 40 °C
Storage temperature	-10 °C to 60 °C
Specification limits	15 °C to 25 °C
Humidity	< 60 %

1.3 Frequency Domain (Impedance) Mode

Frequency range	3 μHz – 1 MHz		
Impedance range	$10^{-4} \Omega - 10^{13} \Omega f^1$		
Capacitance range	1 fF – 100 F		
Inductance range	100 nH – 1 kH		
Basic Accuracy:1	Basic Accuracy: ¹		
Impedance , Capacity , Inductance	<1.10-4		
Phase angle δ	< 6 m°		
Loss factor $tan(\delta)$	< 2 · 10-4		
Resolution			
Relative Impedance, Capacity, Loss factor tan(δ)	< 10 ⁻⁵ , Phase Angle < 0.6 m		
Internal Reference Capacitors	100 pF, 1 nF		

4

 $^{^{1}}$ For details, cf. the specification charts in $\underline{\text{Impedance Measurement Ranges and Accuracy}}$.

1.4 Time Domain Mode

1.4.1 Counter Electrode Polarization

Voltage	±15 Vp dc and / or ac max.
DC Accuracy	$1 \text{ mV} + 10^{-4} \text{ of value}$
DC Resolution	0.5 mV
AC Resolution	10 μV
Current	±10 Ap dc and / or ac
DC Accuracy	10 ⁻³ of value + 3·10 ⁻⁴ of range + 2 pA
Resolution	1/32768 of current range, 0.1 pA min.
Output Power	120 W max
Internal Power Dissipation	10 A Current into shorted load without overheating
Output Resistance	$0.1 \dots 1 \text{ k}\Omega$ in factors of 10
Bandwidth	DC 1 MHz
Voltage Limit	1 20V
Accuracy	0.5 V
Current Limit	1 mA 10.5 A
Accuracy	10 % of value + 5 % of range

1.4.2 Reference Voltage Inputs RE+, RE-

Configurations	Single or differential configuration with selectable driven shield
Voltage ranges	±15 V
DC Accuracy	$100 \mu V + 10^{-4}$ of value
DC Resolution	10 μV
Input impedance	> 10 ¹² Ω 10 pF
Common Mode Rejection	$< 10^{-4}$ below 100 kHz $< 10^{-3}$ below 1 MHz
Input Bias Current	< 2 pA
Bandwidth	dc – 10 MHz

1.4.3 Working Electrode Current Input WE

Current Ranges	100 pA 10 A in factors of 10
DC Accuracy	10^{-3} of value + $3\cdot10^{-4}$ of range + 1 pA
Resolution	10 ⁻⁵ of range, 0.1 pA min.
Bandwidth	dc – 10 MHz

1.4.4 Main Control Loop

Operation modes	Potentiostat, Galvanostat and Direct Voltage
dc accuracy	$100 \mu V + 10^{-4}$ of value
Time constants	0.3 ms - 3 s in factors of 3.33
Bandwidth	dc – 10 MHz
Electrolyte Rs compensation	Automatic Rs detection by high frequency EIS Rs compensation or correction

2 Technical Data POT/GAL 30 V 2 A

2.1 General

Sample connections	4, 3 and 2 wire, CE, RE+, RE-, WE
System ground modes	Protective earth or floating for grounded samples
Voltage current modes dc and ac	Potentiostat, Galvanostat, and Direct Voltage
System Interface	GPIB
Line voltage	220 - 240 V ac, 50 - 60 Hz or 110 V ac, 50 - 60 Hz (see instrument rear)
Power consumption	< 300 W
Dimensions	49 · 58 · 9 cm³ (width/depth/height)
Weight	10 kg

2.2 Environment

Operating temperature	0 °C to 40 °C
Storage temperature	-10 °C to 60 °C
Specification limits	15 °C to 25 °C
Humidity	< 60 %

2.3 Frequency Domain (Impedance) Mode

Frequency range	3 μHz – 1 MHz	
Impedance range	$10^{-4} \Omega - 10^{13} \Omega f^2$	
Capacitance range	1 fF – 100 F	
Inductance range	100 nH – 1 kH	
Basic Accuracy: ²		
Impedance , Capacity , Inductance	<1.10-4	
Phase angle δ	< 6 m°	
Loss factor tan(δ)	< 2.10-4	
Resolution		
Relative Impedance, Capacity, Loss factor $tan(\delta)$	< 10 ⁻⁵ , Phase Angle < 0.6 m	
Internal Reference Capacitors	100 pF, 1 nF	

7

² For details, cf. the specification charts in <u>Impedance Measurement Ranges and Accuracy</u>.

2.4 Time Domain Mode

2.4.1 Counter Electrode Polarization

Voltage	±30 Vp dc and / or ac max.
DC Accuracy	2 mV + 10 ⁻⁴ of value
DC Resolution	1 mV
AC Resolution	20 μV
Current	±2 Ap dc and / or ac
DC Accuracy	10 ⁻³ of value + 3·10 ⁻⁴ of range + 2 pA
Resolution	1/32768 of current range, 0.1 pA min.
Output Power	60 W max
Output Resistance	$1 1 k\Omega$ in factors of 10
Bandwidth	DC 1 MHz
Voltage Limit	2 V – 40V
Accuracy	0.5 V
Current Limit	2 mA - 2.1 A
Accuracy	10 % of value + 5 % of range
Internal Power Dissipation	2 A Current into shorted load without overheating

2.4.2 Reference Voltage Inputs RE+, RE-

Configurations	Single or differential configuration with selectable driven shield
Voltage ranges	±30 V
DC Accuracy	200 μV + 10 ⁻⁴ of value
DC Resolution	20 μV
Input impedance	$> 10^{12} \Omega \mid 10 \text{ pF}$
Common Mode Rejection	< 10 ⁻⁴ below 100 kHz < 10 ⁻³ below 1 MHz
Input Bias Current	< 2 pA
Bandwidth	dc – 10 MHz

2.4.3 Working Electrode Current Input WE

Current Ranges	20 pA – 2 A in factors of 10
DC Accuracy	10 ⁻³ of value + 3·10 ⁻⁴ of range + 0.5 pA
Resolution	10 ⁻⁵ of range, 0.1 pA min.
Bandwidth	dc – 10 MHz

2.4.4 Main Control Loop

Operation modes	Potentiostat, Galvanostat and Direct Voltage
dc accuracy	$100 \mu V + 10^{-4}$ of value
Time constants	0.3 ms - 3 s in factors of 3.33
Bandwidth	dc – 10 MHz
Electrolyte Rs compensation	Automatic Rs detection by high frequency EIS Rs compensation or correction

3 Impedance Measurement Ranges and Accuracy

3.1 Accuracy of Impedance Measurement POT/GAL 15 V 10 A

The specifications below applies for the following conditions:

Temperature 15 °C .. 25 °C

Direct Voltage, Potentiostat or Galvanostat* modes, time constant 1 μ s, no dc voltage or current, auto ranging for impedance measurements on.

Ac sample voltage 1 Vrms for $|Z| >= 1 \ \Omega$ or 1 Arms ac sample current for $|Z| < 1 \ \Omega$ Low Capacity Open calibration enabled, All- and Load Short calibrations done. Impedance measured for a sample connected by BNC cables with 25 cm length to the POT/GAL terminals.

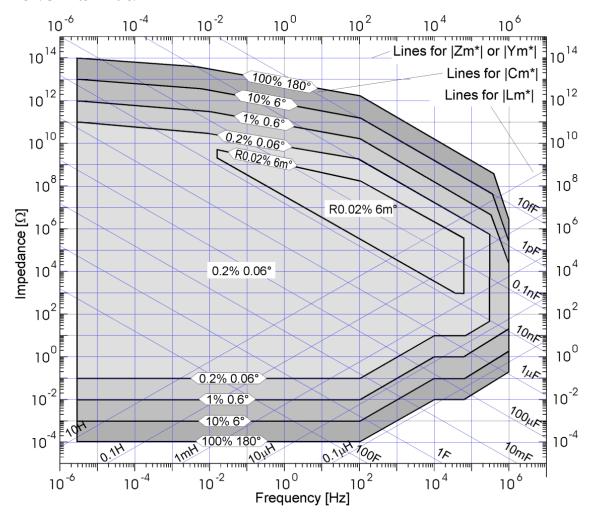


Fig. 1. POT/GAL 4-wire mode impedance measurement accuracy. For details see text below.

*For capacitive samples measured in Galvanostat mode the auto ranging procedure does not use current ranges below 1 mA. If for such kind of samples significantly lower currents in Galvanostat mode have to be measured, manual selection of current range and time constant may be required. For details refer to the POT/GAL user's manual "Current Range Selection and Switching" chapter.

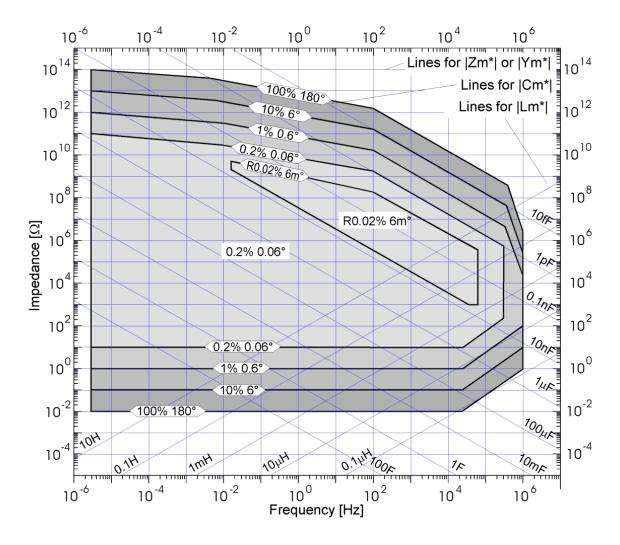


Fig. 2. POT/GAL 2-wire mode impedance measurement accuracy. For details see text below.

For impedance points in the areas between the lines of constant accuracy, the accuracy should be interpolated from the neighboured lines of constant accuracy.

The labels in the two inner areas show the accuracy within the entire areas.

R denotes linearity within the labelled area or line. See details below.

The R0.02 % areas apply for measurements with activated reference measurement mode in Direct Voltage mode only.

3.2 Accuracy of Impedance Measurement POT/GAL 30 V 2 A

The specifications below applies for

Temperature 15 °C .. 25 °C

Direct Voltage, Potentiostat or Galvanostat* modes, time constant 1 μ s, no dc voltage or current, auto ranging for impedance measurements on.

Ac sample voltage 1 Vrms for $|Z| >= 1~\Omega$ or 1 Arms ac sample current for $|Z| < 1~\Omega$ Low Capacity Open calibration enabled, All- and Load Short calibrations done. Impedance measured for a sample connected by BNC cables with 25 cm length to the POT/GAL terminals.

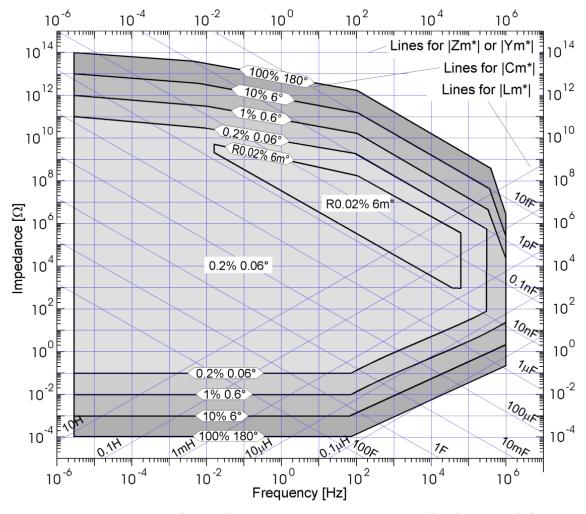


Fig. 3. POT/GAL 4-wire mode impedance measurement accuracy. For details see text below.

*For capacitate samples measured in Galvanostat mode the auto ranging procedure does not use current ranges below 2 mA. If for such kind of samples significantly lower currents in Galvanostat mode have to be measured, manual selection of current range and time constant may be required. For details refer to the POT/GAL user's manual "Current Range Selection and Switching" chapter.

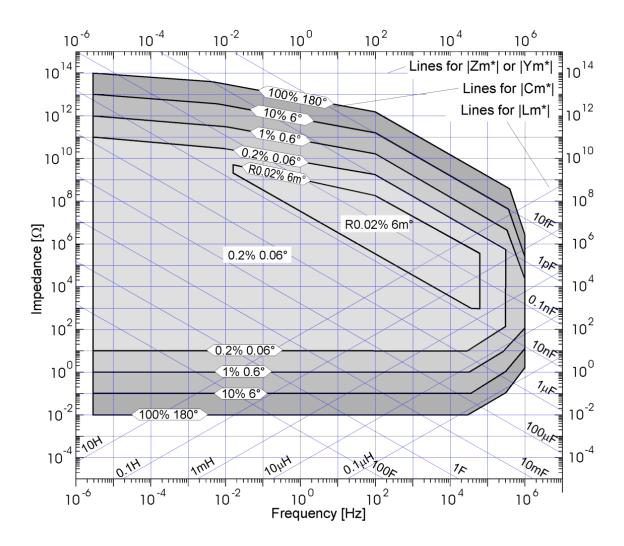


Fig. 4. POT/GAL 2-wire mode impedance measurement accuracy. For details see text below.

For impedance points in the areas between the lines of constant accuracy, the accuracy should be interpolated from the neighboured lines of constant accuracy.

The labels in the two inner areas show the accuracy within the entire areas.

R denotes linearity within the labelled area or line. See details below.

The R0.02~% areas apply for measurements with activated reference measurement mode in Direct Voltage mode only.

3.3 Using the Impedance Accuracy Specification

Consider a measured impedance point Zm^* represented by its absolute value $|Zm^*|$ and phase angle ϕm . The accuracy of Zm^* can be defined by a percentage factor A with respect to $|Zm^*|$ and a phase deviation ϕ .

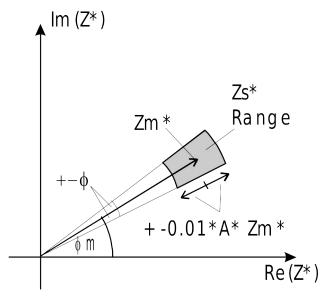


Fig. 5. Definition of accuracy area in dependence of amplitude and phase accuracy.

The true sample impedance Zs* is in the shaded area.

A and ϕ depend on the frequency and impedance range of Zm*. They are shown in the diagram on the previous page as lines of constant accuracy. Each line of constant accuracy is labelled by an accuracy specification. The different labels have following meaning:

Line Label	Accuracy Definition on Labelled Line
100 % 180 °	Limit of the available impedance range measured either by an open sample
	(top line) or a short sample (bottom line).
Α % φ°	Specifies absolute accuracy A for Zs* in percentage of the measured value
	and absolute phase angle accuracy ϕ .
	$ Zs*(\omega) = (1 + - A/100) Zm*(\omega) $
	$\phi s = \phi m + - \phi$
RA % \$ %	Like above, but RA species relative accuracy instead of absolute accuracy.
	E.g. Inside the area surrounded by the R0.01 % line, impedance values will
	be linear to 0.01 % to each other but may have 0.1 % error in absolute value.
	Linearity applies both in frequency and impedance direction.
	ϕ specifies the absolute phase accuracy like above. E.g. ϕ =6 m° corresponds
	to an absolute accuracy in loss factor $tan(\delta)$ of 10^{-4} .

3.3.1 Example 1

Consider a measured data point Zm* with $|\text{Zm*}| = 2 \cdot 10^{11} \,\Omega$ at 1 Hz. It is located in the accuracy diagram between the constant accuracy line 0.1% 0.06° and 1% 0.6°. By logarithmic extrapolation between the lines one gets the accuracy of about

±0.33% of |Zm*| for the |Zs*| absolute accuracy

and

±0.22° for the absolute Zs* phase accuracy.

In addition to Zm*, the accuracy may be determined in the other representations measured capacity Cm*, measured inductance Lm* or measured admittance Ym*. These quantities are related to Zm* by

$$Cm^* = -\frac{j}{\omega Zm^*} \tag{1}$$

$$Lm^* = \frac{Zm^*}{j\ \omega} \tag{2}$$

$$Ym^* = \frac{1}{Zm^*} \tag{3}$$

with $\omega = 2 \pi$ frequency and j = imaginary unit.

As can be seen from the above equations, all conversion only affect the phase angle by constant shift of $\pm 90^\circ$ (Lm*, Cm*) or leave the phase angle unchanged (Ym*). Therefore the phase accuracy is the same for all four representations and the amplitude accuracy is only affected by the absolute value of each representation. The corresponding lines for |Cm*| (linear decreasing impedance with ω) and Lm* (linear increasing impedance with ω) are shown in the accuracy specification. The lines for |Ym*| correspond to the horizontal lines for |Zm*| if inverted. From these lines, the accuracy can be determined for all representations.

3.3.2 Example

Frequency and capacity range with loss factor $tan(\delta)$ absolute accuracy of $\pm 10^{-4}$.

 $\tan(\delta) = \pm 10^{-4} \leftrightarrow \delta = \pm 6 \text{ m}^{\circ}$. As can be seen from the impedance specification this applies for capacities from 20 pF to 5 nF. For e. g. 100 pF the frequency range for $\delta \pm 6 \text{ m}^{\circ}$ is 0.2 Hz to 1 MHz. As this range is labelled with R0.01%, the relative accuracy with respect to each other of all |Cm*| values within this labelled area will be 10^{-4} , too. E. g. |Cm*| of an ideal capacitor would be measured flat to $\pm 0.01\%$ over the specified frequency range. The absolute accuracy of |Cm*| is 0.1% as the R0.01% area is inside the 0.1% area.

3.4 Accuracy of Gain Phase Measurement

Refer to the gain phase specification in the Alpha-A mainframe manual or Alpha-A technical specification.